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1 Introduction

Gauge/gravity correspondence has often provided us easy tools for addressing difficult

problems of strongly interacting gauge theories. It is based on the observation that large

N, large t’Hooft coupling limit of certain gauge theories have alternative weakly-coupled

effective descriptions in terms of gravity or string theory [1]. One important aspect of

these dual theories is that the spacetime they are living is one-dimension higher than

the original spacetime of gauge theories, and the additional dimension, often referred to

as holographic coordinate, plays a physical role of energy scale of a given process. This

mapping of space-energy is practically achieved by the presence of a warping factor in the

metric that depends on the additional dimension, which provides a geometrical potential

along the holographic dimension.

Out of vast amount of previous works that have been done over a decade to test and

study this idea, one interesting application has been to describing the deconfined phase

of gauge theories in a sufficiently high temperature, whose dual picture is a black-hole

spacetime with its horizon located at some point in the holographic coordinate [2, 3]. Due

to the geometric barrier along holographic dimension provided by the warping factor in

the metric, this black-hole spacetime is stable against its Hawking radiation, resulting in

an equilibrium state called Hartle-Hawking state. Performing relatively easy analyses in

this black-hole background has given us many valuable, typically non-trivial, results about

physics of high temperature, deconfined gauge theories in strong coupling [4].

In this work, we would like to add one more piece to the mounted pile of results about

high temperature phase of gauge theories obtained using gauge/gravity correspondence.

Our motivation is two-fold. We first study ZN walls in the Euclidean picture of finite
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temperature deconfined phase of pure SU(N) Yang-Mills theory using the Witten’s dual

background of D4-branes [3]. We are interested in the k-wall with k
N

∼ O(1), which is

largely motivated by a recent work of Armoni, Kumar and Ridgway for the case of N = 4

SYM via the AdS5×S5 background [5]. Similar to their result, we will show that the k-wall

with k
N

∼ O(1) is k (Euclidean) D2-branes blown up to a single NS5-brane wrapping S3

inside the S4 in the background via Myers effect. We calculate its tension after performing

suitable U-dualities of Type II SUGRA to make the problem more tractable. Our result

of k-wall tension indicates certain limitations of finite temperature black-hole geometry of

Witten’s background that has been used in the previous literature.

Our second motivation is to study the fate of ZN discrete vacua, and hence ZN walls

connecting them, when we include fundamental flavor quarks in the gauge theory. One

naturally expects that since ZN is no longer a symmetry of the theory in the presence

of fundamental matters, these ZN vacua are generally lifted except the one true vacuum.

However, there appears an issue when the fundamental matters are much more massive

than the temperature, because the physics with energy scale below the mass of fundamental

matters decouples from the fundamental matters, and the effective low energy theory would

still have a center ZN symmetry. One logical possibility is that when
mq

T
≫ 1, the ZN

vacua and domain walls persist in the theory, while they disappear at
mq

T
≪ 1, and these

two phases are separated by a phase transition at
mq

Tc
∼ O(1). We will give an evidence to

this scenario in the framework of gauge/gravity correspondence using D3/D7-brane system

corresponding to N = 2 fundamental hypermultiplets in N = 4 SYM [6].

In the case of massless fundamental flavors, ZN vacua are lifted unambiguously. Us-

ing gauge/gravity correspondence, we calculate analytically this energy lift of k-vacua in

quenched approximation, in both D3/D7 system and in the Sakai-Sugimoto model [7].

As a by-product, we also find an infinite tower of stable states above each lifted k-vacua,

similar to the tower of stable states above θ-vacuum that was found in ref. [8].

Note added in revision. The author was informed of an issue of correct interpretation

of center ZN symmetry and the corresponding ZN walls in Euclidean thermal SU(N) gauge

theory.1 If one takes SU(N)/ZN as the gauge group rather than SU(N), the center ZN

symmetry is absent and the ZN walls are not the Minkowski domain walls, but instead

some Euclidean instanton-like objects [9]. In the presence of fundamental flavors, the

gauge group is indeed SU(N) and the center ZN symmetry can be at least an approximate

symmetry of the theory. Our second subject of the paper should be viewed in this way.

Alternatively, one can think of thermal S1 as a spatial compactification, and consider 3-

dimensional Minkowski theory after Wick rotation along one non-compact spatial direction.

In that context, one can talk about Minkowski domain walls in the 3 dimensional theory.

2 Review of center ZN in gauge/gravity correspondence

This section is devoted to a brief review on the center ZN symmetry of the Euclidean

description of finite temperature SU(N) gauge theory with only adjoint matters, and its

1We thank Andrei Smilga for bringing this issue to our attention.
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spontaneous breaking in the deconfined phase via non-vanishing Polyakov line along the

thermal circle [10, 11]. We will also summarize relevant results in refs. [5, 12] in the context

of gauge/gravity correspondence to lay ground for our analyses in subsequent sections.

Readers familiar to these subjects can jump into the next section.

2.1 Center ZN and its spontaneous breaking in hot SU(N) gauge theory

An Euclidean finite temperature gauge theory is defined in the space S1 × R3, where the

thermal circle, or Euclidean time, has a period β = 1
T
. As a SU(N) gauge theory, field

configurations that are connected by SU(N) gauge transformations must be treated as

identical to each other, and one should mod out the space of fields by gauge transformations.

Having S1 means that the local gauge function U(x) ∈ SU(N) that we mod out should

be periodic along S1 to preserve usual periodicity of matter fields that are charged under

SU(N). If the theory contains only adjoint matters, one might think of an extended notion

of gauge transformation whose gauge function U(x) ∈ SU(N) is periodic only up to an

element of the center ZN inside SU(N). This is because for adjoint matters Φ, as ZN

freely commutes with adjoint Φ, the gauge transformation

Φ(x) → U(x)†Φ(x)U(x), (2.1)

doesn’t change the periodicity of Φ, and seems to be allowed without any problem. Note

however that under the extended gauge transformation, the Wilson line along the thermal

S1, called Polyakov line,

W (S1) =
1

N
TrP exp

(

i

∫ β

0
Aτdτ

)

, (2.2)

transforms exactly by the center ZN element W (S1) → e
2πik

N W (S1). Therefore, if we accept

W (S1) as one of physical ”gauge invariant” observables of the theory, the extended gauge

transformations are in fact not allowed as gauge transformations that we mod out. Rather

they should be thought of as symmetries of the theory as the action is clearly invariant

under the transformations. The extended gauge transformations are constant ZN times

the usual periodic gauge transformations that we mod out, so that the resulting symmetry

is a global ZN symmetry.

One can immediately identify W (S1) as an order parameter of the spontaneous break-

ing of this center ZN symmetry. In fact, it can be argued to get a non-vanishing expectation

value in the deconfined phase of high temperature, while it should vanish in the confined

phase. The rough picture is that W (S1) represents a world-line of an external fundamental

quarks sitting at a point in R3 in Euclidean finite temperature description. In the confined

phase, its presence would cost too much free energy due to confinement so that the parti-

tion function with W (S1) would vanish, while one generally expects a finite non-vanishing

result in the deconfined phase. Therefore, ZN is spontaneously broken in the deconfined

phase, and there exist N -number of vacua parameterized by the ZN phase of the order

parameter W (S1). One naturally thinks of domain walls connecting these vacua. By k-

wall, we will refer to a domain wall connecting i’th vacuum and i + k’th vacuum, and k is

identified with k + N by definition.
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There is a beautiful connection between a ZN domain wall and a large spatial t’Hooft

line [13]. Consider a large spatial t’Hooft line along a curve C which bounds a large surface

S spanning two space directions in R3, say x1 and x2. By t’Hooft line, we mean inserting

a magnetic monopole whose world-line is the curve C. In the presence of a magnetic

monopole, the Bianchi identity for the electric gauge potential A is violated by

dF = δ
(3)
C , (2.3)

where δ
(3)
C is the Poincare dual 3-form to C. Being familiar to the case of Dirac monopole,

we can think of S as a Dirac sheet, a world-sheet spanned by a Dirac string. As ∂S = C,

we have

dδ
(2)
S = δ

(3)
C , (2.4)

and we see that

F = dA = δ
(2)
S . (2.5)

Then, consider a cylinder D made of S1 times a finite interval in R3 which connects two

points P,Q from the two opposite sides of the surface S, so that this interval crosses S at

a single point in R3. It is clear that this cylinder has an intersection number 1 with the

surface S in our spacetime S1 × R3, or equivalently
∫

D

δ
(2)
S = #(D,S) = 1 . (2.6)

Using (2.5), the left-hand side in the above is

∫

D

F =

∫

∂D

A =

∫

S1atP

A −
∫

S1atQ

A , (2.7)

which tells us that the phase of Polyakov line jumps across the surface S of Dirac sheet, and

we can think of S as a domain wall separating regions of different Polyakov lines. Although

the above discussion is given in terms of an Abelian gauge theory, the logic is essentially

identical in the case of non-Abelian SU(N) gauge theory, and the conclusion is that the

k-wall can be thought of as the minimal surface S bounded by a large spatial t’Hooft line

of k-th anti-symmetric representation of the magnetic group.

2.2 ZN vacua and ZN walls in gauge/gravity correspondence

As one typically considers the large N limit in discussing gauge/gravity correspondence,

it may at first seem unlikely to see discrete ZN symmetry in the gravity dual description.

However, believing AdS/CFT correspondence beyond the leading large N limit, one should

be able to access sub-leading 1
N

effects by carefully taking into account quantum effects

in the gravity side, which is not easy in general. In the case of ZN , Aharony and Wit-

ten successfully identified the relevant quantum effect in AdS5 × S5 background, that is

responsible for the discrete ZN symmetry appearing in the gravity dual description of the

N = 4 SYM [12].

For our purposes, we will recapitulate only the case of Poincare patch version of AdS5×
S5 corresponding to the gauge theory defined on S1 × R3, while we refer the readers to
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ref. [12] for the discussion of N = 4 SYM theory on S1 × S3. This is because only in the

former case, we can have a spontaneous breaking of global symmetry such as ZN that we

are interested in. A finite temperature phase of N = 4 SYM in Euclidean description has

a unique dual geometry given by the Euclideanized black-hole in the Poincare patch;

ds2
E =

r2

L2

[(

1 − π4T 4L8

r4

)

dt2E + dx2
i

]

+
L2

r2

1
(

1 − π4T 4L8

r4

)dr2 + L2dΩ2
5 , (2.8)

where the thermal circle combined with the holographic radial coordinate r makes a two-

dimensional cigar shape D that closes off at the location of the horizon rH = πTL2 with

L4 = 4πgsNl4s . The theory is always in the deconfined phase due to conformal symmetry.

As is well-known, the expectation value of a Wilson line is calculated by the semi-classical

string world-sheet which has a boundary at UV r → ∞ along the curve of the Wilson

line [14, 15]. One easily identifies such string world-sheet in the case of our Polyakov

temporal Wilson line W (S1); it spans precisely the cigar D of the thermal circle and r.

Because the world-sheet closes off at a finite point r = rH , it would give us a finite value

of the string action, and hence non-vanishing expectation value of W (S1) after suitable

holographic renormalization [16], which is in accord with the fact that W (S1) is non-

vanishing in a deconfined phase. However, there appears a puzzle since it seems one can

freely turn on NS 2-form B with dB = 0 on the cigar without any change in the Type IIB

SUGRA action, with arbitrary values of

1

2πl2s

∫

D

B , (2.9)

which appears as a phase of our semi-classical string amplitude, and hence of W (S1). As

this B mode is a normalizable mode, we in fact have to sum over these possible phases in the

partition function, which would make the expectation value of W (S1) zero [3]. To prevent

this, there must be a mechanism that lifts the degeneracy among continuous values of NS

B field, and we indeed also need this to have ZN discrete values of the phase of W (S1).

Ref. [12] showed that the necessary mechanism is from quantization of the RR 2-form

C in our background with N D3 flux on S5,

1

(2πls)4

∫

S5

F5 = N , (2.10)

such that the action contains the piece

N ·
(

1

2πl2s

∫

D

B

)

· 1

(2πls)2

∫

R3

dC ≡ θ · 1

(2πls)2

∫

R3

dC , (2.11)

from the Type IIB term 2π
(2πls)8

∫

M10
F5 ∧ B2 ∧ H3 with H = dC. With the usual kinetic

term for H = dC along R3 obtained after integrating out S5 × D,

gsN

27π5l4sT
3

∫

R3

(H123)
2 ≡ 1

2e2

∫

R3

(H123)
2 , (2.12)
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the above θ was shown to play a similar role as the θ
2π

F01 term in 2D Abelian U(1) theory,

where the vacuum energy is given by

Eθ =
e2

2(2πls)4
· mink∈Z(2πk − θ)2 , (2.13)

with integer k labelling certain allowed quantum states of the system. This says θ = 2πZ

are discrete vacua among continuous possibilities, and looking back (2.11), one readily finds

discrete ZN vacua of

1

2πl2s

∫

D

B =
2πk

N
, k ∼ k + N , (2.14)

in the quantum theory, which at the same time also explains the ZN phase of W (S1) at

each vacua.

The ZN walls in the gravity description can most easily be identified by considering

their connection to large spatial t’Hooft lines that we discussed above. In the simplest case

of k = 1 wall, the t’Hooft line corresponds to a (Euclidean) D1 brane world-sheet whose

boundary at r → ∞ is along the t’Hooft line curve. One may think of the D1 brane as the

Dirac sheet of the t’Hooft line, and one concludes that D1 brane spanning along two spatial

directions in R3 is the k = 1 domain wall. Note that when the t’Hooft line is large, most

of the D1 world-sheet will sit at the IR end r = rH to minimize its tension. Therefore, the

D1 brane sitting at r = rH and a point in S5, while spanning two directions in R3 is the

final configuration we are seeking for the k = 1 wall in N = 4 SYM. In a recent work by

Armoni, Kumar and Ridgway [5], they proposed that for k-walls with k
N

∼ O(1), the k D1

branes are blown up to a NS5 brane wrapping S4 ⊂ S5 via Myers effect, and the result

for the k-wall tension in their picture supports this claim, that is, for low k the tension is

simply that of the k D1 branes, and (N − k)-wall tension is equal to the k-wall tension.

3 k-walls in the Witten’s D4-brane background

We come to one of our objectives in this work; calculating k-wall tension with k
N

∼ O(1) in

the (approximate) gravity dual of pure SU(N) Yang-Mills theory. We first discuss briefly

how center ZN appears in the Witten’s background, which is rather closely parallel to the

case of AdS5 × S5.

There are two finite temperature Euclidean geometries competing with each other near

the confinement-deconfinement phase transition; a confined phase at low T where the ther-

mal circle remains finite in all spacetime region, and a deconfined phase of Euclideanized

black-hole where the thermal circle shrinks to zero at the horizon, making a cigar shape

combined with the holographic direction [17].

– 6 –
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The confined phase geometry is

ds2 =

(

U

R

) 3

2
(

dt2E + dx2
i + f(U)dx2

4

)

+

(

R

U

) 3

2

(

dU2

f(U)
+ U2dΩ2

4

)

,

F4 =
(2πls)

3N

V4
ǫ4, eφ = gs

(

U

R

) 3

4

, V4 = Vol(S4) =
8π2

3
,

R3 = πgsNl3s , f(U) = 1 −
(

UKK

U

)3

, (3.1)

with the thermal circle tE periodic tE ∼ tE + β, and x4 is compactified with the period

δx4 =
4π

3

(

R3

UKK

)
1

2

≡ 2π

MKK
. (3.2)

The useful relation between the above parameters and the 4D gauge theory data on (tE , xi)

is given by [7]

R3 =
g2
YMNl2s
2MKK

, UKK =
2

9
g2
YMNMKKl2s , gs =

g2
YM

2πMKK ls
. (3.3)

As usual the Polyakov line expectation value is described by a string world-sheet wrapping

tE and one more direction in the geometry, and since tE never shrinks to zero one easily

finds that there is no way this string stops in the geometry without turning back to the UV

boundary U → ∞, which corresponds to another anti-Polyakov line in the gauge theory.

In short, 〈W (S1)〉 = 0 with a single insertion of W (S1) in the gauge theory, in accord

to the expectation in a confined phase. The way discrete ZN symmetry appears in the

situation is that if we insert W (S1)’s by multiple N times, these multiple N number of

string world-sheets can now sit on (Euclidean) D4 branes wrapping S4 × tE, because on

this baryonic D4-brane, there is a Chern-Simons coupling

µ4

∫

D4
F4 ∧ (2πl2s)A =

1

(2πls)3

∫

D4
F4 ∧ A = N

∫

dtE A0 , (3.4)

which induces N string charges on the world-volume, so that N strings can sit on it [18].

Therefore, multiple N times insertion of W (S1)’s gives us a finite expectation value and

one concludes that there is a ZN symmetry under which W (S1) has a unit charge. Note

that the ZN symmetry is unbroken in this phase due to 〈W (S1)〉 = 0.

Our present interest concerns more about the deconfined phase at high T , for which

the dual geometry is given by

ds2 =

(

U

R

) 3

2

(

f(U)dt2E + dx2
i +

1

(MKK ls)2
dx2

4

)

+

(

R

U

) 3

2

(

dU2

f(U)
+ U2dΩ2

4

)

,

F4 =
(2πls)

3N

V4
ǫ4 , eφ = gs

(

U

R

)
3

4

, V4 = Vol(S4) =
8π2

3
,

R3 = πgsNl3s , f(U) = 1 −
(

UT

U

)3

, (3.5)
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where the period of the thermal circle, β = 1
T

, is related to UT by

β =
4π

3

(

R3

UT

)
1

2

, (3.6)

and we have re-scaled x4 such that its period is (2πls) for later convenience. In this

background, the string world-sheet for a Polyakov line can stop at U = UT where the

thermal circle tE shrinks to zero making a cigar shape D with U ≥ UT , so that the string

action becomes finite and one expects a non-vanishing VEV of W (S1). The same issue of

NS 2-form phase 1
2πl2s

∫

D
BNS arises as in the case of AdS5 ×S5, and the resolution is also

similar. In Type IIA, there is a term

2π

(2πls)8

∫

M10

F4 ∧ F4 ∧ B2 = N ·
(

1

2πl2s

∫

D

BNS

)

1

(2πls)3

∫

xi,x4

F4 ≡ θ · 1

(2πls)3

∫

xi,x4

F4 ,

(3.7)

and considering quantizing FRR
4 along (xi, x4) after integrating over S4 × D to get the

kinetic term
3gsN

29π6l5sT
3

∫

dxidx4 (F1234)
2 , (3.8)

we have the integer parameterized vacua of θ = 2πZ to minimize the energy of the allowed

quantum states treating x1 as a time,

Ψk = exp

(

ikµ2

∫

x2,3,4

CRR
3

)

= exp

(

2πik

(2πls)3

∫

x2,3,4

CRR
3

)

. (3.9)

This provides us the ZN vacua of

1

2πl2s

∫

D

BNS =
2πk

N
, k ∼ k + N , (3.10)

corresponding to the spontaneous breaking of ZN by 〈W (S1)〉 6= 0.

It is not difficult to identify the string theory object that plays a role of ZN domain

walls, at least for k-walls with sufficiently low k’s. Again, using the large spatial t’Hooft

line is most convenient. In our D4 background, the magnetically charged sources compared

to the electrical degrees of freedom of fundamental strings are provided by x4 wrapping

D2-branes [19]. This can also be seen by considering T-duality along x4 upon which N

D4-branes become D3-branes and D2 becomes D1, the usual magnetic degrees of freedom.

Consequently, a large spatial t’Hooft line will be the boundary of the world-volume of a

x4-wrapped (Euclidean) D2-brane at U → ∞, and most of the D2-brane world-volume will

sit at the IR end U = UT to minimize its tension. We can think of two spatial directions

in R3 that D2-brane is spanning as the Dirac sheet corresponding to the t’Hooft line, and

hence the k = 1 domain wall. Therefore, the D2-brane sitting at U = UT and a point in S4

while spanning x4 and two directions in R3 is the desired k = 1 domain wall in the gravity

side. For small number of k, one naturally expects a collection of k D2-branes to be the

corresponding object for the k-wall. Its tension is calculated straightforwardly by the DBI

– 8 –
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action of D2-branes at U = UT ,

Tk = kµ2

∫

dx4 e−φ
√

g∗

∣

∣

∣

∣

∣

U=UT

=
2πk

(2πls)3
2π

gsMKK

(

UT

R

)
3

2

=
32π3

27
kN

T 3

MKK
. (3.11)

This result is qualitatively different from both the weak-coupling calculations of pure SU(N)

Yang-Mills theory [20, 21], and the recent weak/strong coupling calculations of N = 4 SYM

by Armoni, Kumar and Ridgway [5], where the results have a common form of

Tk = (const) · kN
T 2

√

g2
YMN

, (3.12)

for small k
N

≪ 1.

One can understand the origin of the discrepancy as follows. The confinement- de-

confinement phase transition in the Witten’s background happens at a temperature Tc of

order MKK [17], and the above deconfinement background becomes relevant when T is

much larger than MKK . However, MKK also serves as a compactification scale of x4 below

which we have a 4D gauge theory, while above which massive KK modes enter the dynamics

and the theory becomes effectively 5-dimensional. The number of KK modes that would

enter at the temperature T is roughly given by T
MKK

, and assuming each new degrees of

freedom contributes to the tension of the domain wall, one can understand T 3

MKK
= T 2 · T

MKK

behavior of our result for the tension formula. However, missing
√

g2
YMN factor remains

still puzzling. One possibility is that the mass of KK modes might become MKK√
g2

YM
N

at strong

coupling, and the number of effective degrees of freedom at T might be T
MKK

√

g2
YMN in-

stead of T
MKK

. Our result may be considered as pointing out this phenomenon. The above

discussion indicates that the deconfinement geometry (3.5) that has been used in the pre-

vious literature has some limitation to be used as a gravity dual background of a 4D gauge

theory in its deconfined phase.

We proceed by studying k-walls with k being large and comparable to N , motivated

by a recent work of Armoni, Kumar and Ridgway in AdS5 ×S5 [5], and our method in this

regard will be similar to theirs. The naive picture of k-wall as a simple collection of k D2-

branes should break down when k ∼ N because k is ZN -valued and moreover k is related

to (N − k) by charge conjugation and the tension must be invariant under this. Similar

to the claim in ref. [5], we propose that k D2-branes sitting at a point in S4 blow up into

a single IIA NS5-brane wrapping S3 ⊂ S4 due to the background F4 flux on S4, and we

confirm this picture by computing the k-wall tension and check the necessary properties.

To analyze more easily the Type IIA NS5-brane dynamics, with k D2-brane charges

on its world-volume along x4 and two spatial directions in R3, say x1 and x2, we perform

U-dualities of Type II theories in the following way. Note first that in the deconfined

phase geometry (3.5), x4 size remains finite in all region of the spacetime, contrary to the

confined phase geometry where x4 shrinks zero at U = UKK . Hence, we are eligible to

take T-duality along x4 in the deconfined phase. We stress that this is not allowed in
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the original Witten’s background with shrinking x4, and one should take this operation

applicable only to the present deconfined phase as a mere tool for calculating some physical

quantities in an easier way. After T-duality, our NS5-brane becomes Type IIB NS5-brane

because it wraps the x4 direction, and the k D2-brane charges wrapping x4 will transform

to k D1-brane charges spanning now only x1 and x2. They are homogeneously distributed

in x4 and S3 ⊂ S4 of our NS5-brane world-volume. We next perform Type IIB S-duality

in the system, such that we finally have a (Euclidean) D5-brane wrapping S3 ⊂ S4 and

x4,1,2, with k F1-string charges on its world-volume along x1,2, homogeneously distributed

in x4 and S3 ⊂ S4. This can be studied by DBI plus Chern-Simons action.

The T-dualized background of (3.5) along x4 looks as

ds̃2 =

(

U

R

) 3

2
(

f(U)dt2E + dx2
i

)

+

(

R

U

) 3

2

(MKK ls)
2dx̃2

4 +

(

R

U

) 3

2

(

dU2

f(U)
+ U2dΩ2

4

)

,

F5 =
(2πls)

3N

V4
dx̃4 ∧ ǫ4 , eφ̃ = eφ 1√

g44
= gs(MKK ls) , (3.13)

where the parameter R and f(U) are same as before, and more importantly x̃4 has the same

period (2πls) as x4. One should remember that the relevant rules of T-duality in ref. [22],

that is, g̃44 = 1
g44

and eφ̃ = eφ 1√
g44

must be applied in the coordinate with the fixed

period (2πls).
2 The resulting 5-form flux simply describes N D3-branes homogeneously

distributed along x̃4, and the dilation is constant as it should be in a D3 background. After

a further S-duality, upon which ds′2 = e−φ̃ds2 and eφ′

= e−φ̃, the final geometry is given by

ds′2 =
1

gs(MKK ls)

(

U

R

)
3

2
(

f(U)dt2E + dx2
i

)

+
(MKK ls)

gs

(

R

U

)
3

2

dx̃2
4

+
1

gs(MKK ls)

(

R

U

) 3

2

(

dU2

f(U)
+ U2dΩ2

4

)

,

F5 =
(2πls)

3N

V4
dx̃4 ∧ ǫ4 , eφ′

=
1

gs(MKK ls)
, (3.14)

and we consider a D5-brane wrapping S3 ⊂ S4 and x4,1,2 with k F1 charges along x1,2.

The (Euclidean) D5-brane action is (we omit primes in the above geometry)

SD5
E = µ5

∫

d6ξ e−φ
√

det (g∗ + 2πl2sF ) − iµ5

∫

CRR
4 ∧ 2πl2sF , (3.15)

with µp = (2π)−pl
−(p+1)
s and we turn on the world-volume gauge flux F = dA only along

x1,2 to represent k F1 charges. To find an expression of CRR
4 usable for our purpose that

satisfies dCRR
4 = F5 with F5 given above, we introduce a polar angle 0 ≤ θ < π on S4 to

write dΩ2
4 = dθ2 + sin2 θdΩ2

3 and ǫ4 = sin3 θdθ ∧ ǫ3 with ǫn being the volume form of the

unit Sn. Our D5-brane is wrapping S3 at a constant θ whose value will be determined

dynamically by a non-zero k F1 flux along x1,2 on its world-volume. We choose the gauge

such that CRR
4 is smooth around θ = 0 to have

CRR
4 =

(2πls)
3N

V4

(

cos θ − 1

3
cos3 θ − 2

3

)

dx̃4 ∧ ǫ3 . (3.16)

2 Moreover, C
here

4 = 4C
there

4 and C
here

3 = 3

2
C

there

3 .
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With these data, it is rather straightforward to compute the above D5 action, except a

subtle point that the k F1 charge along x1,2 is represented by an imaginary F12 ≡ iF [5].

One way of seeing this is to consider a Wick-rotated Lorenzian situation with x1 being the

time direction, where the F1 string charge would be unambiguously given by a real F12.

Upon going back to our Euclidean situation by the Wick-rotation of x1, the F1 flux will

transform to an imaginary value.

The resulting D5-brane action density on x1,2 after integrating over S3 and x4 is

sD5
E =

N

4
sin3 θ

√

C

(

U

UT

)3

− F 2 +
3N

4

(

cos θ − 1

3
cos3 θ − 2

3

)

F , (3.17)

where (U, θ) is yet undetermined position of the D5-brane, and

C =
45π6N2T 6

36M2
KK

. (3.18)

The k F1 charge on its world-volume is now identified as a conserved flux

k = −δsD5
E

δF
=

N

4









F sin3 θ
√

C
(

U
UT

)3
− F 2

− 3 cos θ + cos3 θ + 2









, (3.19)

which can be solved for F in terms of (U, θ), and the effective Hamiltonian density one

obtains after a Legendre transform with the conserved flux F becomes

h = sD5
E + kF =

N

4

√

C

(

U

UT

)3
√

sin6 θ +

(

3 cos θ − cos3 θ − 2 +
4k

N

)2

, (3.20)

and we have to minimize this with respect to (U, θ) to find the k-wall tension in our

framework. It is trivial to see that the D5-brane sits at the IR end U = UT , while

the size of S3 inside S4 given by the polar angle θ must be determined by solving the

following equation

sin2

(

θ

2

)

=
k

N
. (3.21)

As the function of θ in the left-hand side is a monotonic function in the range [0, π] with

values between (0, 1), one checks that k ↔ (N − k) corresponds to θ ↔ (π − θ) in the

solution. With the solution of θ and U = UT , the k-wall tension is finally given by

Tk =
N

4

√
C sin2 θ =

8π3

27
N2 sin2 θ

T 3

MKK

=
32π3

27
k(N − k)

T 3

MKK

, (3.22)

with the desired property of Tk = TN−k. Note that we obtain the precise Casimir scaling

Tk ∼ k(N − k), contrary to the N = 4 SYM result in ref. [5]. For a small k
N

≪ 1, one also

confirms that the result reduces to the tension of k D2-branes (3.11),

Tk ≈ 32π3

27
kN

T 3

MKK
,

k

N
≪ 1 . (3.23)
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4 Fate of ZN vacua with fundamental flavors

In this section, we come to our second motivation, that is, studying what happens to the

ZN -vacua with a presence of fundamental flavors in a probe approximation, or equivalently

in a quenched approximation, via gauge/gravity correspondence. We first consider the

system of D3/D7-branes that is dual to N = 4 SYM perturbed by a small number of

N = 2 fundamental hypermultiplets represented by Nf probe D7-branes in a N D3-brane

background [6]. We are especially interested in the dependence on the mass of the flavors

given by the asymptotic distance between D7 and D3-branes. We also calculate the energy

lift of ZN -vacua in the massless case analytically, and finally perform a similar analysis in

the model by Sakai-Sugimoto [7] for a QCD-like theory with massless chiral quarks.

4.1 D3/D7 system

Although the appearance of discrete ZN vacua in the deconefined phase geometry (2.8)

of N = 4 SYM is a sub-leading effect of large N limit, one can still advocate a quenched

approximation where one neglects back-reaction of the probe D7-branes to the N = 4 SYM

dynamics including the mechanism of selecting ZN vacua. We point out that this is just one

type of approximation which is not solely based on the large N limit, because back-reactions

of D7-branes may well be of the same sub-leading order of the previous mechanism of ZN

vacua in gravity. However, we feel that the present quenched approximation is a useful one

to pursue due to its practical calculability and the possibility of its comparison to lattice

QCD in the same quenched approximation.

Working in the quenched approximation in the gravity side means that we take the

previous ZN vacua of
1

2πl2s

∫

D

BNS =
2πk

N
, (4.1)

as a given background and consider the probe dynamics of D7-branes embedded in it. As

we neglect possible back-reactions, questions regarding the fate of ZN vacua become those

of the probe D7-branes, such as whether the energy of k’th vacuum is lifted or not. We

can address this question by studying the energy of the probe D7-brane in the k’th gravity

vacuum (4.1).

The action of a probe D7-brane is

SD7
E = µ7

∫

d8ξ e−φ
√

det (g∗ + BNS∗ + 2πl2sF ) , (4.2)

where the Chern-Simons term is irrelevant for our purpose. One should study the equations

of motion of the embedding XM (ξ) and the world-volume gauge field F = dA in the

presence of the background BNS in (4.1), and in general these two are coupled to each

other, except the case of trivial vacuum k = 0 where one can turn off F = 0 consistently.

This special case was analyzed in ref. [23] with varying hypermultiplet mass mq, where they

found a phase transition of meson-melting at Tc ∼ mq. Our problem is a more sophisticated

version of theirs.
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To parameterize D7-brane embedding in the background of (2.8), it is convenient to

introduce the rectangular coordinate x4,5,6,7,8,9 such that r and S5 coordinates are related

to them by

dr2 + r2dΩ2
5 =

9
∑

i=4

(dxi)2 , (4.3)

and in fact they are nothing but the original R6 coordinates transverse to the D3-branes.

Asymptotically at r → ∞, our D7-brane spans four flat directions out of x4−9, say x4−7,

being a point at x8,9 with a distance 2πl2smq from the center. This fixes the UV boundary

condition specified by the mass of the fundamental flavor mq. As r goes to the infrared

region, the D7-brane would feel an attraction toward the horizon at r = rH and it bends.

One easily finds that the spherical symmetry on x4−7 is a symmetry of the situation, and

the D7-brane wraps S3-sphere in x4−7 given a point in x8,9. Moreover D7-brane would

move only along one axis on the x8,9-plane, and one can take x9 ≡ 0 without loss of

generality. Then, the embedding is simply given by a map between x8 and the radius ρ of

S3 inside x4−7. One notes that r2 = (x8)2 + (x9)2 + ρ2 and

dr2 + r2dΩ2
5 =

(

dx8
)2

+
(

dx9
)2

+ dρ2 + ρ2dΩ2
3 , (4.4)

so that one can equally describe the embedding by a map between x8 and r, which will

be chosen from now on. We will choose the world-volume coordinates ξa by (tE , xi, r,Ω3),

and x8 is a function of r specifying the embedding shape that is determined dynamically

with the specified UV boundary condition at r → ∞,

x8(r → ∞) = 2πl2smq , (4.5)

as we discuss in the above. The induced metric g∗ab on the D7 world-volume is then

ds2
D7 =

r2

L2

[(

1 − π4T 4L8

r4

)

dt2E + dx2
i

]

+
L2

r2

(

r2 −
(

x8(r)
)2
)

dΩ2
3

+
L2

r2







(

r − x8(r)dx8(r)
dr

)2

r2 − (x8(r))2
+

(

dx8(r)

dr

)2

+
π4T 4L8

r4 − π4T 4L8






dr2 , (4.6)

from which one easily computes the action density along x1,2,3 after integrating over tE
and S3,

sD7
E =

β

26π5gsl8s

∫

dr
(

r2 −
(

x8(r)
)2
)

3

2

√

A +
(

BNS
0r + 2πl2sF0r

)2
, (4.7)

with

A ≡
(

1 − π4T 4L8

r4

)







(

r − x8(r)dx8(r)
dr

)2

r2 − (x8(r))2
+

(

dx8(r)

dr

)2

+
π4T 4L8

r4 − π4T 4L8






, (4.8)

where we turn on F0r along (tE , r) as a possible world-volume flux in response to the given

background BNS
0r with

β

2πl2s

∫ ∞

rH

dr BNS
0r =

2πk

N
. (4.9)
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We are assuming symmetry along the thermal circle tE without loss of generality.

The equation of motion of the gauge field is simple to solve;
δsD7

E

δF0r
is a constant of motion,

δsD7
E

δF0r
∼

(

r2 −
(

x8(r)
)2
) 3

2
(

BNS
0r + 2πl2sF0r

)

√

A +
(

BNS
0r + 2πl2sF0r

)2
≡ r3

HC , (4.10)

with some constant C and we factored out r3
H for later convenience. One can solve the

above for
(

BNS
0r + 2πl2sF0r

)

, and the remaining dynamics of the D7 embedding x8(r) will

then be described by the Routhian,

RD7
E =sD7

E −
∫

dr

(

1

2πl2s
BNS

0r + F0r

)

δsD7
E

δF0r

=
β

26π5gsl8s

∫

dr
√

A

√

(

r2 − (x8(r))2
)3

− r6
HC2,

(4.11)

given a value of C. The quest is to scan possible range of C and the resulting D7-brane

embedding shape from solving the above RD7
E , to minimize the original action density sD7

E .

Once the final configuration is found, one can compute its energy density from sD7
E to

address the question of energy lift of ZN vacua. The necessary numerical analysis, as one

varies the quark mass mq, is beyond the scope of the present work. Identifying a phase

transition would be an interesting future direction.

However, we make several important remarks. Note that in our coordinate

parametrization of D7 embedding, there is an inequality

x8(r) ≤ r, (4.12)

and the equality x8(r) = r happens precisely when S3 shrinks to zero, where the D7-brane

stops going into a lower r, that is, it is the end point of the D7 embedding in the radial

direction r. If this happens at r = r0 > rH in the solution, the D7-brane doesn’t touch

the horizon, and we are in the phase of un-melted mesons in the gauge theory side. It is

important to observe that in this phase the D7-brane covers only part of the (tE, r) cigar

D of the background (2.8), that is, a cylinder topology of [r0,∞] × tE inside the cigar D.

Looking back the expression (4.10), one readily finds that the constant of motion C must

be zero in this phase considering the point r = r0, and this in turn says that

1

2πl2s
BNS

0r + F0r ≡ 0 , (4.13)

in all region of the D7-brane world-volume. Then the analysis of the embedding shape

and the resulting energy density from sD7
E becomes precisely equal to the case of trivial

vacuum k = 0 or without BNS/F fluxes at all. One concludes that ZN -vacua are not

lifted and persist to exist in this phase in quenched approximation. One interprets that

the world-volume flux F nullifies the background BNS flux to minimize sD7
E . In the gauge

theory point of view, as the world-volume gauge symmetry on the D7-brane is the flavor

global symmetry in the gauge theory side, this points out an interesting phenomenon of

a dynamically generated monodromy of flavor symmetry along the thermal circle that

counteracts the existing ZN Wilson line in the ZN -vacua, to make the ZN -vacua viable

– 14 –



J
H
E
P
0
4
(
2
0
0
9
)
0
2
9

even in the presence of fundamental flavors. One mathematical remark is that (4.13) is

possible precisely because the topology of D7-brane in (tE , r) is cylindrical, so that there

is no topological restriction of its
∫

F value.

In the other phase where x8(r) < r remains true until it hits the horizon r = rH , the

D7-brane meets the horizon and the mesons are melted. A crucial point in this phase is

that the D7-brane now wraps the whole cigar D of (tE , r) with topology of a two-plane,

and there is an important topological restriction

∫

D

F = 2πm , m ∈ Z . (4.14)

Suppose one tries to put C = 0, or equivalently 1
2πl2s

BNS
0r +F0r ≡ 0, to minimize the action

sD7
E as before, then

∫

D

F = − 1

2πl2s

∫

D

BNS = −2πk

N
/∈ 2πZ , (4.15)

except the trivial vacuum k = 0. In other words, in the k’th vacuum it is not possible to

completely nullify the ZN Wilson line BNS due to a topological restriction, and one has a

non-vanishing C 6= 0 or 1
2πl2s

BNS
0r + F0r 6= 0 in the non-trivial ZN vacua. For each integer

m, C must be determined to satisfy (4.14), and one should choose m that minimizes the

energy sD7
E . Looking at the expression (4.7) of sD7

E , one sees that the resulting energy is

always higher than the trivial vacuum k = 0 where 1
2πl2s

BNS
0r + F0r ≡ 0, and we conclude

that the ZN vacua are lifted in the phase of melted mesons.

The question at which phase the system finds its solution given the UV boundary

condition of the flavor mass mq should be addressed numerically, but for a sufficiently

large
mq

T
≫ 1 it is natural to expect the former phase where the mesons are un-melted and

the ZN vacua survive, while in the extreme case of mq = 0 it is obvious that x8(r) ≡ 0 and

we are in the latter phase of melted mesons with ZN -vacua lifted. One naturally expect a

phase transition to happen at some point Tc ∼ mq. An interesting question is whether the

critical temperature Tc depends on k or not because of the additional contribution from

the BNS/F fluxes to sD7
E , whose answer is beyond the present paper.

In the simplest case of mq = 0 where one can consistently set x8(r) ≡ 0 to be in the

melted-meson phase, it is possible to compute the energy lift of the ZN -vacua analytically.

Note that we have A = 1 in (4.7) with x8(r) ≡ 0, and the equation of motion for the gauge

field (4.10) simplifies as
r3
(

BNS
0r + 2πl2sF0r

)

√

1 +
(

BNS
0r + 2πl2sF0r

)2
≡ r3

HC , (4.16)

which can be solved for F ,

F0r = − 1

2πl2s
B0r +

C

2πl2s

√

(

r
rH

)6
− C2

. (4.17)

As discussed before, C can not take any continuous values, but is restricted to only discrete

values to satisfy the topological constraint (4.14). Explicitly, integrating both sides of (4.17)
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over D, one has

2πm = −2πk

N
+

Cβ

2πl2s

∫ ∞

rH

dr
1

√

(

r
rH

)6
− C2

= −2πk

N
+

CβrH

2πl2s

∫ ∞

1
dr̂

1√
r̂6 − C2

, (4.18)

so that given (m,k), the C is determined by

C

∫ ∞

1
dr̂

1√
r̂6 − C2

=
C

2
2F1

(

1

3
,
1

2
,
4

3
, C2

)

= 2π

(

m +
k

N

)

1√
πgsN

, (4.19)

where we have used rH = πTL2 = πT (4πgsN)
1

2 l2s . Once C is determined as a function of

(m,k), it is straightforward to calculate the energy density sD7
E ,

sD7
E − sD7

E

∣

∣

∣

k=0
=

βr4
H

26π5gsl8s

∫ ∞

1
dr̂

(

r̂6

√
r̂6 − C2

− r̂3

)

=
πgsN

2T 3

4

∫ ∞

1
dr̂

(

r̂6

√
r̂6 − C2

− r̂3

)

, (4.20)

where we have subtracted the value of the trivial vacuum k = 0 to see the energy lift of

the (m,k) state. For a fixed k, one should choose m that minimizes the energy to finally

find the energy lift of the k-vacuum,

∆ǫk = minm∈Z

(

sD7
E

∣

∣

∣

(m,k)
− sD7

E

∣

∣

∣

k=0

)

. (4.21)

From (4.20), one has to minimize C2, and an inspection of (4.19) shows that this is achieved

by the smallest value of |m + k
N
|. Therefore, our result is invariant under k → k + N and

k → (N − k), which are the desired properties due to ZN nature and charge conjugation.

For low lying k-vacua with k
N

≪ 1, we have m = 0 to minimize the energy, and an easy

calculation gives us

∆ǫk ≈ π2 k2

N
T 3 ,

k

N
≪ 1 . (4.22)

One also finds that ∆ǫk has a discontinuous slope at k
N

= 1
2 .

4.2 The model of Sakai and Sugimoto

The Sakai-Sugimoto model is obtained by introducing probe D8/D̄8 branes in the Witten’s

D4-brane background, that span S4 × R3,1 × U and are point-like in x4-direction. In the

original weak-coupling D4/D8/D̄8-brane picture, one finds left(right)-handed chiral quarks

from D4−D8(D4− D̄8) string spectrum, and at low energy the resulting 4D gauge theory

flows precisely to QCD with massless chiral flavor quarks. One therefore expects the gravity

picture to capture some of the interesting dynamics of this semi-realistic gauge theory, at

least for low enough energy regime. In the confined geometry (3.1) where (x4, U ≥ UKK)

makes a cigar shape with vanishing x4 at U = UKK , the D8/D̄8-brane pair must join

with each other at IR, realizing spontaneous chiral symmetry breaking in an intuitively

geometric way. Our current interest is however on the opposite case of the deconfined
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geometry (3.5), where x4 remains finite everywhere, and we instead have a cigar shape

D with (tE , U ≥ UT ). In this case, each D8 and D̄8-brane separately meets the horizon

at U = UT and their world-volume embedding is simply parameterized by a constant x4

position. We will consider a single pair of D8/D̄8-branes for simplicity.

As we consider D8/D̄8-branes in the ZN -vacua of the background,

1

2πl2s

∫

D

BNS =
β

2πl2s

∫ ∞

UT

dU BNS
0U =

2πk

N
, (4.23)

one can easily find that the embedding shape can still be consistently given by a constant

x4 from the equation of motion, and we will take this without further detail. One can also

be convinced by translational symmetry along x4. Because the Chern-Simons term of the

D8/D̄8 doesn’t play any role here, the actions of D8 and D̄8 are identical, and the total

action is two times the DBI action of the D8-brane,

SE = 2µ8

∫

d9ξ e−φ
√

det (g∗ + BNS∗ + 2πl2sF ) , (4.24)

where we choose the world-volume coordinates ξa to be (tE , xi, U,Ω4). It is straightforward

to compute the above, turning on a possible world-volume gauge field F0U along the cigar

D of (tE , U). After integrating over S4 × tE , the action density in the spatial R3-direction

becomes

sE =
N

1

2

3 · 24π
11

2 g
1

2
s l

15

2
s T

∫ ∞

UT

dU U
5

2

√

1 +
(

BNS
0U + 2πl2sF0U

)2
. (4.25)

The equation of motion for F0U is simply δsE

δF0U
= const., which we parameterize by

U
5

2

(

BNS
0U + 2πl2sF0U

)

√

1 +
(

BNS
0U + 2πl2sF0U

)2
≡ U

5

2

T C , (4.26)

with a dimensionless constant C, and from this one easily solves for F0U as

F0U = − 1

2πl2s
B0U +

1

2πl2s

C
√

(

U
UT

)5
− C2

. (4.27)

As in the previous case of D3/D7 system, an important point is a topological restriction

∫

D

F = β

∫ ∞

UT

dU F0U = 2πm , m ∈ Z , (4.28)

and this determines the constant C in terms of given (k,m) as follows,

C

∫ ∞

1
dÛ

1
√

Û5 − C2
=

2C

3
2F1

(

3

10
,
1

2
,
13

10
, C2

)

=

(

m +
k

N

)

4π2l2s
βUT

=

(

m +
k

N

)

9

4πgsNlsT
, (4.29)
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where 2F1 is the hypergeometric function. Once C is given, one can easily calculate the

difference in the action density sE from the k = 0 vacuum where
(

BNS
0U + 2πl2sF0U

)

= 0,

and after sorting out the coefficients, the final answer is

sE − sE

∣

∣

∣

k=0
=

210π5g3
sN

4l3sT
6

3

∫ ∞

1
dÛ Û

5

2





√

Û5

Û5 − C2
− 1



 . (4.30)

For a given k-vacuum, one should find the integer m such that it minimizes the above

result, and that is the final energy lift of the k’th vacuum ∆ǫk. Because C2 is a monotonic

increasing function of
∣

∣

∣m+ k
N

∣

∣

∣, one should take the smallest possible value of
∣

∣

∣m+ k
N

∣

∣

∣, and

this again gives us ∆ǫk = ∆ǫk+N and ∆ǫk = ∆ǫN−k. The slope is discontinuous in the

middle k
N

= 1
2 . For small k

N
≪ 1, one has m = 0 and one can easily find that

C ≈ 27

8π

1

gsNlsT

k

N
,

k

N
≪ 1 , (4.31)

and

∆ǫk ≈ 64π3gslsk
2T 4 = 2334π2

(

g2
YMN

) k2

N

T 4

MKK

,
k

N
≪ 1 , (4.32)

where we have used gsls =
g2

YM

2πMKK
. This is qualitatively different from the case of D3/D7

system (4.22).

5 Conclusion

In this work, we first study k-walls with k ∼ N in the Witten’s D4-brane background

of pure SU(N) Yang-Mills theory in large N limit, largely motivated by a recent work in

AdS5 × S5 by Armoni, Kumar and Ridgway [5]. We propose and check consistency of the

picture that k (Euclidean) D2-branes blow up into a NS5-brane wrapping S3 inside S4 of

the background via Myers effect. We compute the tension of k-wall by performing suitable

U-duality to transform the NS5-brane into a D5-brane. Our result is a precise Casimir

scaling behavior of the k-wall tension Tk ∼ k(N − k). We note that the same Casimir

scaling was also obtained for the k-quark flux tube tension in ref. [24].

Our second subject is to consider fate of ZN -vacua in the presence of fundamental

flavors in quenched approximation via gauge/gravity correspondence. In our study of

D3/D7 system, we point out an interesting phenomenon of phase transition as one varies
mq

T
, which separates the phase of un-melted mesons with ZN -vacua survived and the phase

of melted mesons with ZN -vacua lifted. An interesting question is whether the critical

temperature depends on k, which should be addressed by a numerical analysis in the future.

In the special case of mq = 0, we calculate the energy lift of k’th vacua analytically.

Our result is consistent with the ZN -nature and the charge conjugation where k → (N−k).

We also find a tower of stable states parameterized by integers m above the lowest energy

state. We do the similar analysis in the Sakai-Sugimoto model for an approximate QCD-

like theory.
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